Work-in-Progress: Large-scale Timer Hardware Analysis for a
Flexible Low-level Timer-API Design

Niels Gandrafy
HAW Hamburg
Niels.Gandrass@haw-hamburg.de

Michel Rottleuthner
HAW Hamburg
Michel . Rottleuthner@haw-

Thomas C. Schmidt
HAW Hamburg
T.Schmidt@haw-hamburg.de

hamburg.de

ABSTRACT

We report on our ongoing development of an optimized low-level
timer-API for the RIOT operating system. Starting with a survey
of hardware timer peripherals from 43 MCU-families and 8 man-
ufacturers, we identify common properties and differences of all
available timer types. Based on this hardware analysis, we propose a
lightweight yet powerful low-level timer-API design. It streamlines
existing timer interfaces and relieves application developers from
the error-prone task of repeatedly writing additional peripheral
driver code.

KEYWORDS
embedded systems, hardware abstraction, operating systems

ACM Reference Format:

Niels Gandraf3, Michel Rottleuthner, and Thomas C. Schmidt. 2021. Work-
in-Progress: Large-scale Timer Hardware Analysis for a Flexible Low-level
Timer-API Design. In 2021 International Conference on Embedded Software
Companion (EMSOFT 21 Companion), October 8-15, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3477244.3477617

1 INTRODUCTION

Timer peripherals are essential to all embedded devices [3]. Man-
ufacturers of microcontroller units (MCUs) today offer a large va-
riety of timer modules ranging from general-purpose to highly
specialized components. With the emerging Internet of Things (I0T),
devices, applications, and deployment contexts of embedded con-
trollers increase in numbers and heterogeneity, and so does the need
for sound hardware abstractions that foster portability. Embedded
operating systems (OSs) are the prevalent solution for develop-
ing sustainable applications in the IoT. One increasingly popular
embedded OS is RIOT [1]. This open-source OS explicitly targets
low-power and resource constrained embedded devices.

RIOT offers five distinct low-level timer modules, all differing in
use and feature availability. With this work, we want to design a
new low-level timer interface that unifies current APIs and hereby
streamlines timer usage throughout the whole RIOT ecosystem. We
start with a large-scale analysis of timer peripherals in Section 2,
and sketch a low-level timer-API, which improves on the existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’21 Companion, October 8-15, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8712-5/21/10...$15.00
https://doi.org/10.1145/3477244.3477617

driver implementations in Section 3. We conclude with an outlook
on our future work.

2 HARDWARE-PLATFORM ANALYSIS

We conducted a survey covering 43 device families of eight manu-
facturers - those are all MCUs currently supported by RIOT-OS. For
every device family, we characterize all hardware timer types by ex-
amining datasheets, reference manuals, and SDKs. Assessed aspects
include basic properties such as counter register width, prescaler
configuration, compare match capabilities, and auto-reload func-
tionality [3, pp. 152-159] as well as more advanced aspects such as
interrupt generation, timer chaining, and low-power features. Since
our data acquisition was explorative and not limited to only the pre-
viously defined properties, it yielded additional results. These were
used to extend our set of assessed aspects before we transformed
gathered information into uniform result tables, referred to as Timer
Comparison Matrices (TCMs). These allow detailed comparison of
timer peripherals across MCU families. The TCMs were then used
to derive inter-MCU-platform findings from.

Our analysis identified counter register widths of timers to be at
least 16 bit among all platforms while 90 % also provide 32-bit and
21 % even 64-bit timers. In addition, especially small timers often
support timer chaining, as found on 71 % of all platforms. Frequency
prescalers are always available, and many timers provide at least
two (64 %) or even four (24 %) channels. However, only 31 % feature
fully independent interrupt vectors for every compare channel.
We observed that 95 % of all timers can be driven by at least one
internal and 92 % by at least one external clock source. On 84 %
of all platforms multiple timer clock sources are selectable and
71 % of all timers can be driven by a designated low-power clock.
All platforms also offer at least one timer that is capable of both
operating in the lowest device power states and waking the CPU
upon event occurrence. Feature sets of general-purpose timers were
confirmed to be virtually uniform across all platforms, whereas
other timer types differed largely in their offered functions and
modes of operation, as also found by Susnea and Mitescu [4, pp. 67-
91]. A uniform timer-API therefore can allow platform-independent
use of basic common features while also being capable of exposing
platform-specific timer functions.

3 TOWARDS A LOW-LEVEL TIMER-API

RIOT-0OS Timer Modules. Currently, three generic and two spe-
cial purpose low-level timer abstractions exist in RIOT-OS. Their
functions are limited to a small set of features that is common to all
MCU-platforms, leaving many timer features unexposed. Though
functionality of most modules overlap, their APIs differ in use and
feature availability. Advanced timer types are often left unexposed,

https://doi.org/10.1145/3477244.3477617
https://doi.org/10.1145/3477244.3477617

EMSOFT’21 Companion, October 8-15, 2021, Virtual Event, USA

periph utimer

/

User-facing API
HW-facing API

User Application /
High-level OS Modules =

Figure 1: Architecture of the proposed low-level timer-API design

and many modules statically map to a single hardware timer. This
leaves a significant number of available peripherals and compare
channels unusable. Registration of callback functions, to be exe-
cuted upon timer overflow interrupts, is only supported by one
module. Timer configuration management is highly platform de-
pendent and differs largely across MCUs. Considering the above,
the application developer often is required to manually (re-)write
low-level driver code whenever advanced features, low-power op-
eration, or specific timer peripherals are needed.

Low-level Timer-API Design. To address current shortcomings
we propose a unified low-level timer-API, incorporating results
of our hardware analysis and a review of related work. It exposes
hardware timers homogeneous and platform-independent, thereby
fostering a transparent and interchangeable use of “all” available
timer peripherals. Access to advanced timer features is kept light-
weight and platform-independence is preserved whenever possible.

Our design is split into a hardware-facing API (hAPI) and a user-
facing API (uAPI), incorporating key aspects of the three-stage
hardware abstraction architecture proposed by Handziski et al. [2].
The hAPI consists of hardware-dependent drivers for each timer
type, interacting directly with the timer peripherals. The uAPI then
uses the hAPI to provide a convenient hardware-agnostic interface
to applications and high-level OS modules, hereby encouraging
uniformity of timer code throughout the whole RIOT ecosystem.
An overview of this architecture is illustrated in Figure 1.

Each hardware timer is represented by a struct that is referenced
when interacting with the peripheral. For every exposed timer, as
configured during compile-time through Kconfig, an instance of
this struct exists. It identifies the peripheral device, provides static
timer information (e.g., width and channel count), and specifies
the hAPI driver to use. One such driver exists for every timer type
(e.g., general-purpose, low-power, RTC) that is used by at least
one exposed timer instance. Drivers consist of minimal function
sets, each represented as a group of function pointers. Common
basic features are directly accessible through designated functions,
whereas more advanced features are exposed via a compact and
flexible property interface, supporting optional feature availabil-
ity. Closely related operations are bundled into single functions
whenever appropriate, e.g., combining start() and stop() into
a single enable(run) call. Driver functions can be mapped freely
and may be shared between multiple drivers, allowing re-use of
single functions as well as entire drivers. Representing chained
timers as a single instance is furthermore possible by combining
peripherals using virtual drivers, as illustrated in Figure 2.

> @ General- E
purpose Vinuala

AN .
— O RTC Base

N. Gandraf}, M. Rottleuthner, T. Schmidt

Timer
0+1

Driver

@ Low-power : |
=1 bl
0 1 H

Driver

Figure 2: A virtual timer driver

In contrast, the uAPI only provides one single set of functions,
usable independent of the underlying timer type. Previously bun-
dled hAPI functions are unbundled for convenient use and function
calls are either delegated to the respective driver directly (e.g., read-
and write operations) or performed as compound operations of
multiple subsequent hAPI driver calls (e.g., relative timer chan-
nel arming). Static attributes and run-time dynamic properties are
made available and additional convenience functions are provided.
Feature support can dynamically be determined by the application
during run-time and is also indicated via function return values.
User-defined callbacks can be attached to both compare match
and overflow interrupts, whenever supported by the respective
timer. All required interrupt maintenance tasks are automatically
performed by the corresponding driver. Clock sources can be run-
time selected as either a generic clock class, such as high-frequency,
low-power or default, or explicitly as a platform-specific clock.

4 CONCLUSION AND OUTLOOK

We have outlined our path towards a unified low-level timer-API
for RIOT that exposes all hardware timers and fosters application
portability. It provides both common platform-independent and
advanced platform-specific timer features. Next on our agenda is
a systematical evaluation and verification of the proposed design.
We first will extend our implementation prototype to a relevant
and diverse set of devices from different manufacturers. Automated
function tests across all platforms shall reveal potential shortcom-
ings and problems. Subsequently, benchmarks will be conducted
to compare the performance of the proposed API against current
implementations. Quantifying the impact of each of the different
abstractions that are part of our novel API-design is crucial. Aspects
to assess shall include timeout latency, jitter, and memory footprint.
After a final optimization phase, we plan to implement the API for
a large set of RIOT devices.

REFERENCES

[1] Emmanuel Baccelli, Cenk Giindogan, Oliver Hahm, Peter Kietzmann, Martine
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Waihlisch. 2018. RIOT: an Open Source Operating System for Low-end Embedded
Devices in the IoT. IEEE Internet of Things Journal 5 (Dec. 2018), pages 4428-4440.

[2] Vlado Handziski, Joseph Polastre, J.-H Hauer, Cory Sharp, Adam Wolisz, and
David Culler. 2005. Flexible Hardware Abstraction for wireless sensor networks.
In Proceeedings of the Second European Workshop on Wireless Sensor Networks.
pages 145-157.

[3] RajKamal. 2011. Embedded Systems: Architecture, Programming and Design (second
ed.). Tata McGraw Hill Education.

[4] Toan Susnea and Marian Mitescu. 2005. Microcontrollers in Practice (Springer Series
in Advanced Microelectronics) (first ed.). Springer-Verlag, Berlin, Heidelberg.

	Abstract
	1 Introduction
	2 Hardware-Platform Analysis
	3 Towards a Low-level Timer-API
	4 Conclusion and Outlook
	References

