Work-in-Progress: Large-scale Timer Hardware Analysis

Niels Gandral3, Michel Rottleuthner, Thomas C. Schmidt

Hamburg University of Applied Sciences

for a Flexible Low-Level Timer-API Design J)
V0T

— TIMER-HARDWARE ANALYSIS —— 2

Gaining detailed insight into target hardware, underpinning the API design.

Determination of all MCU device families currently
AHATIAOAL supported by RIOT-OS. Acquisition of datasheets,
®

SELECTION .
reference manuals, application notes and others.

ANALYSIS Definition of criteria gnd pr_opertles_ to at least be
extracted from available information sources.

CRITERIA . :

Based on literature analysis and extended by us.

Extraction of timer data into mind-map structure.
If documentation was unclear at some point,
additional data sources (e.g. SDKs) were used.

Consolidation of results into Timer Comparison
Matrices (TCMs) for each analyzed platform.

. Determination of inter-MCU-platform insights
INTER-FLATFORM based on all TCMs. Includes basic properties
as well as availability of advanced features.

FINDINGS

- RIOT-OS TIMER MODULE REVIEW — i 3

Review of existing low-level timer implementations and their limitations.

¢ Reduced to minimal common function set RIOT-OS Modules
e Functionality often overlaps between modules periph/
e Neither exposing all hardware timers nor all their - timer (&)
basic features (e.g. compare channels) - rtc (O)
e Peripheral allocation conflicts between modules - rtt (O)
— pwin (lllll)

* Application developers are often required to write .,
driver code for features (e.g. low-power modes) - wdt (&

e Timer selection and configuration highly heteroge-
neous and requires changes to OS header files

— LOW-LEVEL TIMER API DESIGN —— A& 5

Streamlining existing APIs into a uniform interface, fostering flexible use of available
timers and features while preserving application portability whenever possible.

periph utimer

[~
\ - > O General-
__||Timer - ~—_ purpose
5| [ gy T3
< <
£ | [Fmer]|.~ Drivera | 2 \
> § 1| o > Low-power
o SF
= |- Tlrger """ DriverB i
N\
User Application / / L > O RTC
High-level OS Modules | \
‘e User-facing API s Hardware-facing API hAPI
Single set of timer type abstracted Compact and reusable timer
functions, exposed to the user drivers for each used timer type,
application and high-level directly interfacing the various
system modules hardware peripherals.
Timer
e Timers interactively configured via KConfig 0+1

e Static properties and run-time status information
provided to application and OS modules

¢ Similar functions are bundled within the hAPI

e Separate handling of CMP and OVF interrupts

Virtual
Driver

fn

. . . Timer Timer
* Run-time (re-)configuration of clock sources 0 1

e Virtual drivers allow representation of chained
timers as atomic instances, extending existing
driver code Driver

Scan to download paper and
get additional information.



https://haw-hamburg.de/
https://inet.haw-hamburg.de/

	– TIMER-HARDWARE ANALYSIS —— [height=0.68em]images/heading-eye  2
	– RIOT-OS TIMER MODULE REVIEW — [height=0.7em]images/heading-modules  3
	– LOW-LEVEL TIMER API DESIGN —— [height=0.7em]images/heading-flask  5

