
Work-in-Progress: Large-scale Timer Hardware Analysis
for a Flexible Low-Level Timer-API Design

Niels Gandraß, Michel Rottleuthner, Thomas C. Schmidt
Hamburg University of Applied Sciences

LITERATURE

REVIEW

1

2

3

4

5

(a) timer hardware

(b) implementation techniques

(c) software modules

TIMER-HARDWARE

ANALYSIS

RIOT-OS TIMER

MODULE REVIEW

DERIVING API

REQUIREMENTS

LOW-LEVEL TIMER

API DESIGN

Assessment of related work on:

43 MCU families from

 8 different manufacturers

Base properties, channels, CLKs,

low-power modes, chaining, ...

Common design aspects and

potential enhancements of

all five existing APIs.

Demands upon a uniform low-level

timer-API for RIOT-OS.

Technical draft of the novel API.

6

7

EVALUATION &

BENCHMARKING

IMPLEMENTATION &

VERIFICATION

First prototypical implementation

on the STM32 platform.

Provide support for various

RIOT-OS compatible MCUs.

feature exposure, portability,

HW capabilities, state, config

management, resources, ...

Two-layered design, separating

hardware- and user-facing APIs.

Platform-independence main-

tained whenever possible.

Validation and benchmarking on

a representative set of MCUs.

Backed by extensive HiL tests

with CI integration.

Scan to download paper and
get additional information.

– TIMER-HARDWARE ANALYSIS —— 2
Gaining detailed insight into target hardware, underpinning the API design.

PLATFORM
SELECTION

ANALYSIS
CRITERIA

INFORMATION
EXTRACTION

PLATFORM
RESULTS

INTER-PLATFORM
FINDINGS

Determination of all MCU device families currently
supported by RIOT-OS. Acquisition of datasheets,
reference manuals, application notes and others.

Definition of criteria and properties to at least be
extracted from available information sources.

Based on literature analysis and extended by us.

Extraction of timer data into mind-map structure.
If documentation was unclear at some point,

additional data sources (e.g. SDKs) were used.

Consolidation of results into Timer Comparison
Matrices (TCMs) for each analyzed platform.

Determination of inter-MCU-platform insights
based on all TCMs. Includes basic properties
as well as availability of advanced features.

– RIOT-OS TIMER MODULE REVIEW — 3
Review of existing low-level timer implementations and their limitations.

• Reduced to minimal common function set

• Functionality often overlaps between modules

• Neither exposing all hardware timers nor all their
basic features (e.g. compare channels)

• Peripheral allocation conflicts between modules

• Application developers are often required to write
driver code for features (e.g. low-power modes)

• Timer selection and configuration highly heteroge-
neous and requires changes to OS header files

RIOT-OS Modules
periph/

– timer (ï)
– rtc (¿)
– rtt (¹)
– pwm (Ú)
– wdt (`)

– LOW-LEVEL TIMER API DESIGN —— 5
Streamlining existing APIs into a uniform interface, fostering flexible use of available

timers and features while preserving application portability whenever possible.

General-
purpose

User Application /
High-level OS Modules

Low-power

RTC

U
se

r-f
ac

in
g

AP
I

H
W

-fa
ci

ng
 A

PI

Driver A

Driver B

periph_utimer

Timer
0

Timer
1

Timer
2

� User-facing API uAPI

Single set of timer type abstracted
functions, exposed to the user

application and high-level
system modules

Ñ Hardware-facing API hAPI

Compact and reusable timer
drivers for each used timer type,
directly interfacing the various

hardware peripherals.

• Timers interactively configured via KConfig

• Static properties and run-time status information
provided to application and OS modules

• Similar functions are bundled within the hAPI

• Separate handling of CMP and OVF interrupts

• Run-time (re-)configuration of clock sources

• Virtual drivers allow representation of chained
timers as atomic instances, extending existing
driver code

Base
Driver

fn

fn

fn

fnVirtual
Driver

Timer
0

Timer
1

Timer
0+1

| haw-hamburg.de ESWEEK 2021 — October 08–15, 2021 inet.haw-hamburg.de �

https://haw-hamburg.de/
https://inet.haw-hamburg.de/

	– TIMER-HARDWARE ANALYSIS —— [height=0.68em]images/heading-eye 2
	– RIOT-OS TIMER MODULE REVIEW — [height=0.7em]images/heading-modules 3
	– LOW-LEVEL TIMER API DESIGN —— [height=0.7em]images/heading-flask 5

