
uTimer: A Uniform Low-level Timer API
for RIOT OS

14th IEEE International Conference on Internet of Things
06-08 December, 2021 – Melbourne, Australia

Niels Gandraß <Niels.Gandrass@haw-hamburg.de>
Michel Rottleuthner <Michel.Rottleuthner@haw-hamburg.de>
Thomas C. Schmidt <T.Schmidt@haw-hamburg.de>

Hamburg University of Applied Sciences
Faculty of Engineering & Computer Science



Introduction

• Timers are fundamental parts of every embedded system

• MCU manufacturers offer a wide range of peripherals, including:
• General-purpose timers
• Low-power timers
• High-speed timers
• Real-time clocks (RTCs)

• Each timer type possesses its own feature-set

^ The Challenge

Embedded OSs need to keep up with the ever-growing variety of timers.
Offering broad out-of-the-box peripheral support while maintaining

application portability is challenging.

1



The Problem of Abstracting Timer Hardware

6 The Abstraction Trade-off * vs. Ê

Direct HW-register access
Yields Near-optimal performance,
but is highly error-prone, laborious,
and prevents portability.

Strongly abstracted timer API
Is portable and user-friendly, but
decreased performance.

6 The Time-memory Trade-off ¿ vs. &

Mitigation of performance loss is partly possible by sacrificing system
memory to reduce computational complexity

Choosing an appropriate level of abstraction therefore is challenging.

2



RIOT OS

The friendly Operating System for the
Internet of Things

¤ RIOT-OS { https://riot-os.org

Free open-source embedded OS for resource constrained IoT devices.
Aims to implement all relevant open standards supporting an Internet of

Things that is connected, secure, durable & privacy-friendly.

3

https://github.com/RIOT-OS
https://riot-os.org/


Current Low-level Timer APIs in RIOT OS

Three generic modules interface common timer
types and two special-purpose modules provide
higher-level features, such as signal generation.

– Only basic timer operations supported

– Module functionality overlaps, but APIs
differ in use and exposed features

– Underlying timer types differ between MCUs

– Peripherals can simultaneously be used by
multiple APIs (resource allocation conflicts)

– Timer selection and configuration via
platform-dependent headers files

Modules
periph/

• timer (ï)

• rtc (¿)

• rtt (¹)

• pwm (Ú)

• wdt (`)

4



Application developers should not

(re-)write low-level driver code!

Í

4



A Unified Timer API
for RIOT OS



A Unified Timer API for RIOT OS

Our Goal

Streamline existing APIs into a uniform interface, fostering a transparent
and interchangeable use of all available timer peripherals. Provide basic
timer functions and out-of-the-box support for device-specific feature,

while preserving platform-independence whenever possible.

To base our API design on, we conducted . . .

• Large-scale analysis of timer hardware
– Covering 43 device families from 8 different manufacturers

• Review of existing low-level timer modules

• Survey of related work

5



Key Design Aspects

• Separation of hardware-facing (hAPI) and user-facing API (uAPI)

• One low-level driver utim_driver_t per timer type

• Exposed timers represented by a utim_periph_t instance,
referencing corresponding utim_driver_t and providing static
timer properties

• Interactive timer selection and configuration via Kconfig

General-
purpose 

User Application / 
High-level OS Modules

Low-power

RTC

U
se

r-f
ac

in
g 

AP
I

H
W

-fa
ci

ng
 A

PI

Driver A

Driver B

periph_utimer

Timer 
0

Timer 
1

Timer 
2

Figure 1: Architecture of the proposed low-level timer API design
6



Key Design Aspects – Hardware-facing API Ñ

One low-level driver struct utim_driver_t per timer type

• Consisting of minimal function pointer sets

• Common basic features are directly accessible
and device-specific features are exposed via a
compact property interface

• Related functions are bundled into single calls

• Driver granular reusability across timer types

• Function granular reusability across drivers

• Virtual drivers allow representation of chained
timers as one atomic timer instance, re-using
existing driver code

Base 
Driver

fn

fn

fn

fnVirtual 
Driver

Timer 
0

Timer 
1

Timer 
0+1

Figure 2: Virtual timer
driver

7



Key Design Aspects – User-facing API �

A single set of functions, independent of the underlying timer type

• Function calls are either directly delegated to the driver or
implemented as multiple subsequent hAPI driver calls

• Previously bundled hAPI functions are unbundled

• Static attributes and run-time dynamic properties are made available

• Compare match and overflow interrupts can be handled separately

• Clock source is run-time configurable

User-facing API Hardware-facing API

timer_set()

read()

1
2
3

set_channel()

Figure 3: Compound uAPI function consisting of multiple hAPI driver calls
8



Validation and Evaluation



Validation and Evaluation

1. Cross-platform Validation via automated platform-independent test
suites with CI integration.

2. Performance Benchmarks using a HiL testbed with CI integration,
comparing the existing periph_timer to our novel periph_utimer.

+ Scope

• STMicroelectronics: STM32L476RG (Nucleo-L476RG)

• STMicroelectronics: STM32F070RB (Nucleo-F070RB)

• Silicon Labs: EFM32PG12B500 (SLSTK3402A)

• Espressif Systems: ESP32 (ESP32-WROOM-32)

Selected MCUs cover different manufacturers, CPU architectures,
counter widths from 16 to 64 bit, common basic timers, advanced

ultra low-power peripherals and chainable timers.

9



Performance Benchmarks – HiL Testbed

Figure 4: One rack of the RIOT HiL testbed used for our benchmarks.

10



Performance Benchmarks – Overview

The following aspects were assessed by our benchmarks:

1. PHiLIP hardware limits

2. GPIO Latency

3. API abstraction overhead
• User-facing API
• Hardware-facing API
• No additional abstraction

4. Timer base operations
• Read counter register
• Write counter register
• Set channel
• Clear channel

5. Timeout latency

11



Performance Benchmarks – API Abstraction Overhead

Isolating the APIs abstraction overhead:

• Read and write operations replaced with no operations (NOPs)

• Operations performed via both uAPI and direct hAPI driver calls

• Measured execution time converted to equivalent CPU cycles

÷ API Abstraction Overhead

• Abstraction via uAPI introduces 6 CPU cycles

• No generic hAPI overhead
– One additional CPU cycle on STM32 due to pipeline refill artifacts.

12



Performance Benchmarks – Timeout Latency

Timeout latency, jitter and error were assessed:

• Timer frequencies between 10 kHz and 10MHz

• Timeout durations between 10 µs and 1 s

• Duration between arming and callback execution is measured

• Difference of expected and actual timeout length is calculated

Í Timeout Latency and Error 1ms @ 1MHz
Timeout latency Ltout increased by between 0.77 µs on

the SLSTK3402A (best) and 2.32 µs on the ESP32 (worst).

The respective timeout error Etout therefore only increased by
between 0.08% (best) and 0.23% (worst).

13



Performance Benchmarks – Timeout Latency

* Edge case: Very short timeouts (≤ 10 µs)

• Every slight increase in timeout latency Ltout significantly
contributes to the timeout error Etout

• In such cases, unnecessary indirection should be avoided

• Direct hAPI use or active waiting (i.e. spinning) is recommended

¡ Edge case: Long-running timeouts (≥ 1 s)

• Impact of timeout latency Ltout increase on timeout error Etout

becomes insignificantly small

• Other factors, such as oscillator accuracy, become dominant

14



Conclusion

The proposed uTimer API streamlines existing RIOT-OS modules
into a uniform interface.

¢

– Abstraction and time-memory trade-offs were successfully balanced,
allowing convenient use while maintaining performance.

– Both platform-independent and platform-specific timer features are
exposed, preserving portability whenever possible.

– Application developers are relieved from modifying OS code and
deep diving into vendor datasheets or SDKs.

15



Questions ?

Discussion (

15



Appendix



STM32L476RG Timer Support in RIOT OS

RIOT-OS Modules
periph/

• timer (ï)

• rtc (¿)

• rtt (¹)

• pwm (Ú)

• wdt (`)

STM32L476RG Peripherals
• General-purpose timer (1/7 ï) (2/7 Ú)

• 32- and 16-bit

• Basic timer (0/2)

• Advanced-control timer (1/2 Ú)

• Low-power timer (1/2 ¹)

• Real-time-clock (1/1 ¿)

• SysTick timer (0/1)

• Watchdog (1/2 `)

  Peripheral Availability

• Only 35% of the available timers are actually usable

• 2 timer types are not exposed by any periph module



Performance Benchmarks – Setup Architecture

Benchmarks consist of a RIOT-based test firmware
and a Robot Framework (RF) test suite.

GPIO traces are captured during benchmarks. Measurement start and
stop is signaled by consecutive rising and falling edges. Hardware limits
like GPIO latency and hold-off times are accounted for.

Figure 5: Architecture of our benchmarking setup



Additional Evaluation Findings

During our evaluation we further found:

• ROM size on 32-bit devices increased by 12 bytes per configured
timer peripheral and 28 bytes for every required timer type driver.

• RAM use was not affected by uTimer.

• Number of out-of-the-box available peripherals and channels
significantly increased and advanced timer types are supported.

• Code quality and usability benefited from the streamlined API.


	A Unified Timer API for RIOT OS
	Validation and Evaluation
	Appendix
	Appendix


